Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries

Bing Li,¹ Dongsheng Geng,¹ Xinjing Shannon Lee,¹ Xiaoming Ge,¹ Jianwei Chai,¹ Zhijuan Wang,¹ Jie Zhang,¹ Zhaolin Liu,*,¹ T. S. Andy Hor,*,¹c and Yun Zong,*,¹

¹Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore
²National Junior College, 37 Hillcrest Road, Singapore 288913, Republic of Singapore
³Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore

Abstract
We report 2D microporous carbon sheets with high surface area, derived from eggplant via simple carbonization and KOH activation, as low cost yet efficient bifunctional catalysts for high performance rechargeable zinc–air batteries.

Ref: Bing Li, Dongsheng Gen, Xinjing Shannon Lee, Xiaoming Ge, JianWei Chai, Zhiluan Wang, Jie Zhang, Zhaolin Liu, T. S. Andy Hor and Yun Zong, Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries, Chemical Communications, 51, 8841 (2015)

URL: http://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc01999k#!divAbstract